文章编号: 0258-7025(2010)00-0000-04

热退火对氮化镓金属-半导体-金属结构紫外 光电探测器性能的影响

赵 曼 赵 梅 范秀英 周脉鱼 谷 峰 张 勇 鲍金河

(空军航空大学特种专业系, 吉林 长春 130000)

摘要 采用金属有机气相外延的方法制备高质量氮化镓薄膜。采用真空热蒸发的方法蒸镀一层金膜,通过传统紫 外曝光及湿法腐蚀的方法,制备得到具有金属-半导体-金属(MSM)结构的紫外光电探测器。通过对器件进行不同 温度不同时间的热退火处理,使器件的性能得到了改善。在3V偏压下,器件的暗电流仅为200pA,响应度的峰值 出现在362 nm 处,其对应的探测率为1.2×10¹¹ cm·Hz^{1/2}/W。对器件性能影响的形成机理进行了深入分析,主要 归因于热处理将 Au 原子引入到薄膜中。

关键词 光电子学;光电探测器;氮化镓;退火;肖特基;暗电流 中图分类号 O472 **文献标识码** A **doi**: 10.3788/CJL20103700.0000

Effects of Thermal Annealing on the Properties of GaN Metal-Semiconductor-Metal UV Photodetectors

Zhao Man Zhao Mei Fan Xiuying Zhou Maiyu Gu Feng Zhang Yong Bao Jinhe (Special Service Department, Aviation University of Air Force, Changchun, Jilin 130000, China)

Abstract Metal-semiconductor-metal structured GaN ultraviolet photodetectors are fabricated on sapphire substrates by metalorganic chemical vapor deposition. The properties of GaN photodetectors are improved through thermal annealing. With a 3 V bias, the very low dark current is about 200 pA, the maximum responsivity of 0.19 A/W is achieved at 362 nm, and the corresponding detectivity is 1.2×10^{11} cm·Hz^{1/2}/W. The physical mechanism about the effects of thermal annealing is studied, which is attributed to the introducing Au by the thermal annealing. **Key words** optoelectronics; photodetector; GaN; annealing; Schottky; dark current

1 引 言

紫外探测技术是继红外和激光技术之后发展起 来的又一军民两用的光电探测技术。因为紫外探测 器能探测到飞机、火箭和导弹等飞行目标的尾焰或 羽焰中释放出的大量紫外辐射,所以在军用方面可 以应用于空间防务和报警系统;在民用方面可以应 用于火灾监控、汽车发动机检测、石油工业和环境污 染的检测等,具有广阔的应用前景。目前,人们研究 最为广泛的是硅基的紫外光电二极管。硅基紫外光 电管需要附带昂贵的滤光片,并需要在高压下工作, 而且体积笨重、效率低、易损坏且成本较高,对实际 应用有一定的局限性^[1]。由于半导体材料近些年的 研究取得了突飞猛进的发展^[2,3],而氮化镓(GaN)成 为了人们的首选,这主要因为GaN是直接的宽带隙 半导体材料,并且对其材料的性能研究得比较成 熟^[4~6]。GaN紫外光电探测器在可见光和红外范 围没有响应(长波截止波长为365 nm),这对在红外 和可见光背景下探测紫外光有特殊的意义。而且紫 外探测器大多工作在高温高强度的恶劣环境。GaN 的热导、热稳定性、化学惰性良好,而且由于GaN具 有高的辐射电阻,更加适合制备复杂的器件^[7~14]。

金属-半导体-金属(MSM)结构光伏型紫外光 电探测器由两个叉指形的背靠背的肖特基 (Schottky)二极管组成,具有不需要进行p型掺杂、

收稿日期: 2009-04-24; 收到修改稿日期: 2009-06-23

作者简介:赵 曼(1982—),女,硕士,助理教授,主要从事 GaN 紫外光电探测器方面的研究。

结构简单、高响应度等特点,得到了人们的普遍关注。已经有关于采用热退火处理的方法来降低二极管的暗电流的报道^[15]。为了提高器件的性能,本文也采用热退火处理的方法来降低 MSM 肖特基型紫外光电探测器的暗电流,并对器件的响应度等性能进行了研究。

2 实 验

2.1 GaN 薄膜制备

样品是通过金属有机气相外延(MOCVD)的方法 在蓝宝石衬底上制备的。分别采用三甲基镓 (TMGa)和氨气(NH₃)作为镓源和氮源。具体实验过 程如下:衬底入炉后先在1423 K的H₂ 气氛下烘烤 20 min 以除去表面的吸附杂质,然后降温至843 K, 生长 20 nm 左右的GaN缓冲层,再升温至1373 K生 长 GaN 外延,外延的厚度约为 3 μm。

2.2 器件的制备与测试

采用传统的紫外光刻和湿法刻蚀的方法,制备 金属-半导体-金属结构的电极结构。选择 Au 作为 金属电极,光刻胶的类型为正型光刻胶,之所以选择 正型光刻胶,主要是因为其和 Au 表面的粘附力比 较好。制备得到的梳妆叉指电极如图1所示,叉指 电极的指宽、指长、指间距分别为 5,500 和5 μm。 电极薄膜主要是通过交流测控溅射的方法制备得到 的。通过分子泵抽真空,溅射腔的背底真空为5.0× 10⁻⁴ Pa。Au 膜的厚度为 200 nm, 根据经验, Au 膜 的厚度控制在 200 nm 左右可以最大限度地透过更 多的激发光,可以间接提高金属与半导体接触的结 的作用。由于 Au 的功函数为 5.1 eV, 所以它是肖 特基接触的优选材料,这在以前的 Au/GaN Schottky 二极管中已有报道^[16]。对于器件性能的 测试,均采用 3 V 的外加偏压,50 Ω 的串联信号电 阳,测量光响应系统采用的是 150 W 的 Xe 灯。采 用半导体特性分析仪(Keithley 4200)来测量器件的 暗电流性质

0					
	Au	Au	Au	Au	
	110				
	GaN(3 µm)				
	GaN buffer (20 nm)				
			~		
	AI_2O_3				

图 1 器件梳妆叉指电极的结构示意图 Fig. 1 Schematic illustration about the interdigitated electrodes of the device

2.3 结果与讨论

退火对于提高器件的性能至关重要,因为退火可 以大量地减少器件中的各种缺陷和寄生电容,对提高 器件的响应度和响应时间是一种有力的手段。GaN 的电子亲和势为4.1 eV,Au的功函数是5.1 eV,根 据经典的肖特基势垒模型,肖特基势垒的高度由金属 的公函数和半导体的电子亲和能的差确定。但是 GaN 表面存在约2 nm 的自燃氧化层和污染层,而且 存在界面态和镜像力的影响,因此与经典的模型有较 大的差距。根据 Chisholm 等^[17]的计算理论,在制备 电极的过程中,一部分 Au 原子会以填隙杂质的形式 存在。这些填隙杂质引入的深能级缺陷是导致势垒 偏低电流偏大的主要原因。图2为 N₂ 气氛下,器件 在 773 K,873 K,973 K和 1073 K常规管式炉中退火 10 min,及室温(RT)条件下的 FV 曲线。

图 2 GaN MSM 结构肖特基型光电探测器在暗场条件 下的不同温度退火 10 min 的 I-V 特性曲线

Fig. 2 *I-V* characteristic of GaN MSM Schottky photodetector in dark, which is annealed at different temperatures for 10 min

可以看到,在退火温度为973K时,器件的暗电 流最小,达到 200 pA,器件的结效应也达到最好。 这说明,在一定的退火温度下,填隙形式的 Au 原子 可以获得足够的能量去填充 GaN 中本身存在的 N 空位或者是 Ga 空位形成的替代式杂质。众所周 知,GaN中也存在着一定的电子浓度,绝大多数人 认为是 N 空位造成的。因此本文认为填隙 Au 原子 主要是用来填充 N 空位。一方面填隙 Au 原子转变 成替代式杂质,使深能级缺陷减少;另一方面由于施 主杂质的形成,使 GaN 的费米能级上升。所以退火 后的肖特基势垒的高度变大,即结效应增强,使器件 的暗电流明显减少。但当退火温度为1073 K 时,金 属与样品之所以变成欧姆接触,主要是因为当 Au 对表面的 N 空位的填充达到饱和后,由热扩散进入 GaN的Au原子将主要以填隙原子的形式存在,即 使要填充体内的 N 空位也要穿过表面层,由此造成

光

37 卷

的深能级缺陷又会使势垒的高度降低。同时考虑到 肖特基势垒的热稳定性的限制,势垒高度也会出现 下降。所以当温度达到一定高度时,结效应就会 消失。

为了进一步优化退火的条件,对器件分别进行 了 5,10,30 及 60 min,973 K 条件下的退火,如图 3 所示。可以看到退火时间为 10 min 时,退火的效果 最好。如果时间过长,会明显破坏器件的对称性,因 为器件的电极结构是 MSM 结构,所以 *I-V* 特性曲 线大体应该是对称的。时间过长之所以会破坏器件 的对称性,主要是因为采用了湿法刻蚀的方法,其时 间过长会造成电极金属向下扩散的程度不一致。

Fig. 3 *I-V* characteristic of GaN MSM Schottky photodetector in dark, which is annealed for different times under 973 K

图 4 为器件分别在 773 K 及 973 K 热退火 10 min及室温原始器件的响应度谱线,可以看到经 973 K 退火后,器件的峰值响应度在 3 V 偏压下为 0.19 A/W,这主要是由于势垒的提高,使得器件的 在空间电荷区的扫走能力大大提高所至。插图为 973 K 退火后器件的响应度随电压的变化关系,可 以看到呈现良好的线性关系,没有到达饱和状态。 器件的噪声电流可以表示成

 $\langle i_{
m rms}^2
angle = (4k_{
m B}T/R_{
m dark} + 2qI_{
m dark})\Delta f$,

其中 R_{dark} 为通过 I-V 曲线测得的电阻, I_{dark} 为暗电 流,T 是测量温度, Δf 为带宽。那么从噪声电流可以 得到器件的噪声等效功率为 $P_{NE} = i_{rms}/R$,R 为测量 的响应度。进而可以得到器件的探测率为(D^*): $D^* = (A\Delta f)^{1/2}/P_{NE}$,其中 A 为光照的有效面积。 在 3 V 偏压下,得到在 362 nm 处器件的最大探测 率为 1.2×10¹¹ cm·Hz^{1/2}/W,需要指出的是这个结 果已经高于相同结构的其他有关 GaN 紫外光电探 测器的报道^[18]。

- 图 4 退火温度为 773 K, 973 K 及室温(RT)条件下 GaN 光电探测器的光响应图谱。插图为进行 973 K 退 火后,器件的响应度与外加偏压在 362 nm 光照条 件下的关系曲线
- Fig. 4 Spectral response of GaN photodetector annealing at 773 K, 973 K and room temperature. The inset shows the responsivity as a function of bias voltage at 362 nm after annealing at 973 K

3 结 论

采用金属有机气相外延法在蓝宝石上制备了肖特基型的 MSM 结构的 GaN 紫外光电探测器,并通 过退火热处理的方法有效地改善了器件的性能。暗 电流在 3 V 偏压下降低到 200 pA,这主要归因于间 隙的 Au 原子获得足够的能量有效地填充了 N 空位 或者是 Ga 空位,提高了晶体质量和肖特基势垒高 度造成的。在波长为 362 nm 处,3 V 偏压下得到了 器件的最大响应度为 0.19 A/W,与之相对应的器 件的探测率为 1.2×10¹¹ cm·Hz^{1/2}/W。

参考文献

- 1 M. Razeghi, A. Rogalski. Semiconductor ultraviolet detectors
 [J]. J. Appl. Phys., 1996, 79(10): 7433~7473
- 2 Ming Xianbing, Lu Fei, Liu Hanping *et al.*. Characterization of optical waveguide in ZnO crystal formed by MeV helium ion implantation[J]. *Chinese J. Lasers*, 2009, **36**(2): 453~457 明宪兵,卢 罪,刘汉平 等. MeV He⁺离子注入氧化锌晶体光波导特性研究[J]. 中国激光, 2009, **36**(2): 453~457
- 3 Li Tieyuan, Lou Caiyun, Wang Li et al.. Terahertz wave generation with low-temperature-grown GaAs photoconductive antennas[J]. Chinese J. Lasers, 2009, 36(4): 978~982 李铁元,娄采云,王 黎等. 低温生长砷化镓光电导天线产生太 赫兹波[J]. 中国激光,2009, 36(4): 978~982
- 4 Xu Ke, Deng Peizhen, Qiu Rongsheng *et al.*. Epitaxial matching orientations of GaN with bare and nitridated Al₂O₃ (0001) substrates[J]. *Chinese J. Lasers*, 1998, A25(4): 369~375 徐 科,邓佩珍,邱荣生 等. GaN/ Al₂O₃(0001)的匹配机制及氮

化的作用[J]. 中国激光, 1998, A25(4): 369~375

5 Lai Tianshu, Wang Jiahui, Zhang Lili *et al.*. Mechanisms of blue and red luminescence of GaN film[J]. Acta Optica Sinica, 2003, 23(12): 1493~1496

赖天树,王嘉辉,张莉莉等. GaN 薄膜的蓝光和红光发射机理研 究[J]. 光学学报,2003, **23**(12): 1493~1496

- 6 Tong Xinglin, Zheng Qiguang, Hu Shaoliu *et al.*. Pulsed laser two-beam deposition of Mg-doped GaN thin films[J]. *Chinese J. Lasers*, 2004, **31**(3): 332~336 童杏林,郑启光,胡少六 等. 脉冲激光双光束沉积掺 Mg 的 GaN
- 薄膜的研究[J]. 中国激光, 2004, **31**(3): 332~336
- 7 Li Xue. GaN UV photodetectors [J]. Infrared, 2004, (5): $23 \sim 27$
 - 李 雪. GaN 基紫外探测器[J]. 红外, 2004, (5): 23~27
- 8 E. Monory, E. Monuz, F. J. Sanchez *et al.*. High-performance GaN p-n junction photodetectors for solar ultraviolet applications [J]. Semicond. Sci. Technol., 1998, **13**(9): 1042~1046
- 9 G. Y. Xu, A. Salvador, W. Kim *et al.*. High speed, low noise ultaviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN (i)-GaN (n) structures [J]. *Appl. Phys. Lett.*, 1997, 71(15): 2154~2156
- 10 N. Biyikli, I. Kimukin, T. Tut *et al.*. High-speed characterization of solar-blind Al_xGa_{1-x} N p-i-n photodiodes[J]. *Semicond. Sci. Technol.*, 2004, **19**(11): 1259~1262
- 11 G. Prish, S. Keller, P. Kozodoy *et al.*, High-performance (Al, Ga) N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN [J]. *Appl. Phys. Lett.*, 1999, 75(2): 247~249
- 12 A. Osinsky, S. Gangopadhyay, R. Gaska et al.. Low noise p-

II-n GaN ultraviolet photodetectors [J]. Appl. Phys. Lett., 1997, 71(16): $2334 \sim 2336$

- 13 V. Adivarahan, G. Simin, J. W. Yang *et al.*. SiO₂-passivated lateral-geometry GaN transparent Schottky-barrier detectors[J]. *Appl. Phys. Lett.*, 2000, **77**(6): 863~865
- 14 B. Yang, D. J. H. Lambert, T. Li *et al.*. High-performance back-illuminated solar-blind AlGaN metal-semiconductor-metal photodetectors[J]. *Electron. Lett.*, 2000, **36**(22): 1866~1867
- 15 T. Sawada, Y. Ito, K. Imai *et al.*. Electrical properties of metal/GaN and SiO₂/GaN interfaces and effects of thermal annealing[J]. *Appl. Surf. Sci.*, 2000, **159~160**: 449~455
- 16 H. T. Wang, S. Jang, T. Anderson *et al.*, Increased Schottky barrier for Au on n- and p- GaN using cryogenic metal deposition [J]. *Appl. Phys. Lett.*, 2006, **89**(12): 122106
- 17 J. A. Chisholm, P. D. Bristowe. Formation energies of metal impurities in GaN[J]. Computational Materials Science, 2001, 2(1): 73~77
- 18 C. K. Wang, S. J. Chang, Y. K. Su *et al.*. High detectivity GaN metal-semiconductor-metal UV photodetectors with transparent tungsten electrodes [J]. *Semicond. Sci. Technol.*, 2005, 20(6): 485~489